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High-order-mode soliton structures in two-dimensional lattices with defocusing nonlinearity
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While fundamental-mode discrete solitons have been demonstrated with both self-focusing and defocusing
nonlinearity, high-order-mode localized states in waveguide lattices have been studied thus far only for the
self-focusing case. In this paper, the existence and stability regimes of dipole, quadrupole, and vortex soliton
structures in two-dimensional lattices induced with a defocusing nonlinearity are examined by the theoretical
and numerical analysis of a generic envelope nonlinear lattice model. In particular, we find that the stability of
such high-order-mode solitons is quite different from that with self-focusing nonlinearity. As a simple example,
a dipole (“twisted”) mode soliton with adjacent excited sites which may be stable in the focusing case becomes
unstable in the defocusing regime. Our results may be relevant to other two-dimensional defocusing periodic
nonlinear systems such as Bose-Einstein condensates with a positive scattering length trapped in optical

lattices.
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I. INTRODUCTION

Ever since the suggestion of optically induced lattices in
photorefractive media such as strontium barium niobate
(SBN) in [1], and its experimental realization in [2—4], there
has been an explosive growth in the area of nonlinear waves
and solitons in periodic lattices. A stunning array of struc-
tures has been predicted and experimentally obtained in lat-
tices induced with a self-focusing nonlinearity, including (but
not limited to) discrete dipole [5], quadrupole [6], necklace
[7] and other multipulse patterns (such as, e.g., soliton stripes
[8]), discrete vortices [9], and rotary solitons [10]. Such
structures have the potential to be used as carriers and con-
duits for data transmission and processing, in the context of
all-optical schemes. A recent review of this direction can be
found in [11] (see also [12]).

Many of these studies in induced lattices were also trig-
gered by the pioneering work done in fabricated Al,Ga,_,As
waveguide arrays [13]. In the latter setting a multiplicity of
phenomena such as discrete diffraction, Peierls barriers, dif-
fraction management [14], and gap solitons [15] among oth-
ers [16] were experimentally obtained. These phenomena, in
turn, triggered a tremendous increase also on the theoretical
side of the number of studies addressing such effectively
discrete media; see, e.g., [17,18] for a number of relevant
reviews.

Finally, yet another area where such considerations and
structures are relevant is that of soft condensed matter phys-
ics, where droplets of Bose-Einstein condensates (BECs)
may be trapped in an (egg-carton) two-dimensional optical
lattice potential [19]. The latter field has also experienced a
huge growth over the past few years, including the prediction
and manifestation of modulational instabilities [20], the ob-
servation of gap solitons [21], and Landau-Zener tunneling
[22] among many other salient features; reviews of the the-
oretical and experimental findings in this area have also re-
cently appeared in [23,24].

In light of all the above activity, it is interesting to note
that the only structure that has been experimentally observed
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in two-dimensional (2D) lattices in “defocusing” media con-
sists of self-trapped “bright” wave packets (so-called “stag-
gered” or gap solitons) excited in the vicinity of the edge of
the first Brillouin zone [2]. However, more complex coherent
structures have not yet been explored in lattices with defo-
cusing nonlinearity and their stability properties have not yet
been examined, to the best of our knowledge. It should be
mentioned that the defocusing context is accessible in the
aforementioned settings. For example, in the photorefractive
lattices, this can be done by appropriate reversal of the ap-
plied voltage to the relevant crystal, while in BECs, the de-
focusing nonlinearity corresponds to the most typical case
arising in dilute gases of *’Rb or **Na.

It is the aim of the present work to examine the nonfun-
damental soliton structures (e.g., dipoles, multipoles, and
vortices) in lattices with a defocusing nonlinearity, and to
illustrate the similarities and differences in comparison to
their counterparts in the focusing case. In particular, we
study dipole structures (consisting of two peaks) and quad-
rupole structures (featuring four peaks), as well as vortices of
topological charge S=1 (cf. [9]) in a 2D induced lattice with
a defocusing nonlinearity. These structures will be analyzed
in detail for both cases, namely, the “on-site” excitation
(where the center of the structure is on an empty lattice site
between the excited ones) and the “intersite” excitation
(where their center is between two lattice sites and no empty
lattice site exists between the excited ones).

Our study of these structures will be conducted analyti-
cally and numerically (in the next two sections) in the con-
text of the most prototypical generic envelope lattice model,
the so-called discrete nonlinear Schrodinger (DNLS) equa-
tion with a defocusing nonlinearity [25] which is related to
all of the above contexts [17,23]. When we find the relevant
structures to be unstable, we will also briefly address the
dynamical evolution of the instability, through appropriately
crafted numerical experiments. Finally, in the last section, we
will summarize our findings and present our conclusions, and
the interesting experimental manifestations that they suggest.
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II. MODEL AND THEORETICAL SETUP

As our generic envelope model encompassing the main
features of discrete diffraction and defocusing nonlinearity
we use the two-dimensional DNLS equation

ithy = — C(Agu) + |ttty (1)

where u, is a complex amplitude of the electromagnetic
wave in nonlinear optics [17], or the BEC wave function at
the nodes of a deep 2D optical lattice [23]; n is the (two-
dimensional in the present study) vector lattice index, and
A, the standard discrete Laplacian. Furthermore, C is the
constant of the intersite coupling (associated with the inter-
well “tunneling rate” [23]), and the overdot stands for the
derivative with respect to the evolution variable, which can
be z in optical waveguide arrays, or the time ¢ in the BEC
model. We focus on standing-wave solutions of the form
up=exp(—iAt) ¢,, with ¢, satisfying the equation

f(¢nvc) E_A¢n_CA2¢n+|¢’n|2¢n:0' (2)

Perturbing around the solutions of Eq. (2) gives rise to the
linearization operator

o (TAT2AE ¢n )CA<1 0)
" & — A +2|¢y? o 1)

(3)

with the overbar denoting complex conjugation. Through an
appropriate rescaling of the equation, we can fix A=1. Our
analysis uses as a starting point the so-called anticontinuum
limit, i.e., the case of C=0, where for the uncoupled sites,

¢n = rnemnv (4)

with the amplitude r,, being 0 or VA, and the phase 6, being
an arbitrary constant. Continuation of such a solution to non-
trivial couplings necessitates that a certain so-called
Lyapunov-Schmidt condition be satisfied [26]. The latter im-
poses for the projection of eigenvectors of the kernel of H;O)
onto the system of stationary equations to be vanishing. This
solvability condition provides a nontrivial constraint at every
“excited” (i.e., r, #0) site of the ac limit, namely,

—2ign(6,C) = — Ce™ Ay + Ce'nAyp,=0.  (5)

It is interesting (and crucial for stability purposes) to note
that this equation has an extra — sign in comparison to its
focusing counterpart. The derivation of these solvability con-
ditions is especially important because the corresponding
Jacobian

has eigenvalues vy that are directly related to the “regular”
eigenvalues of the linearization problem A, through the equa-
tion

A= +1\27. 7)
Hence, the method that we use to derive the eigenvalues A\
(which fully determine the crucial issue of stability of the

solution for small C) consists of a perturbative expansion of
the solution from the ac limit
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which allows us to derive the principal bifurcation conditions
for a specific configuration and therefore infer its linear sta-
bility properties through the eigenvalues of M and their con-
nection to the linearization eigenvalues \. Recall that a non-
zero real part of any eigenvalue is a necessary and sufficient
condition for an exponential instability in Hamiltonian sys-
tems, such as the one considered herein.

III. COMPARISON OF ANALYTICAL
AND NUMERICAL RESULTS

A. General terminology

We start with some general terminology that we will use
in this section. The designation in phase (IP) will be used for
two sites such that their relative phase difference is 0, while
out of phase (OP) will signify that it is 7. Furthermore, on
site (OS) will mean that the center of the configuration is on
an empty lattice site (between the excited ones), while inter-
site (IS) will signify that the center is located between the
excited lattice sites (and no empty site exists between them).
For all modes, in the figures below, we show their power
P=X|u,|* as a function of the coupling strength C, as well as
the real and imaginary parts of the key eigenvalues (the ones
determining the stability of the configuration). We start with
the dipole configuration (consisting primarily of two lattice
sites; see Figs. 1-4). We also examine the more complex
quadrupole (see Figs. 5-8) and vortex (see Figs. 9 and 10)
configurations. In all cases, we offer typical examples of the
mode profiles and stability for select values of C. When the
configurations are found to be unstable, we also give a typi-
cal example of the instability evolution, for a relevant value
of the coupling strength. Another general feature that applies
to all modes is a continuous spectrum band extending for
\; € [A=8C,A]. This latter trait significantly affects the sta-
bility intervals of the structures in comparison with their fo-
cusing counterparts as we will see also below (since configu-
rations may be stable for small C, but not for larger C).

The presentation of the figures will be uniform throughout
the manuscript in that in each pair of figures, we examine
two types of configurations (one in the left column and one
in the right column). The first figure of each pair will have
five rows showing P as a function of C (top row), the prin-
cipal real eigenvalues (second row) and imaginary eigenval-
ues (third row). In these plots, the numerical results are
shown by the solid (blue) line, while the analytical results by
the dashed (red) line. The fourth and fifth rows show typical
examples of the relevant configuration (obtained through a
fixed point iteration of the Newton type) and its stability
eigenvalues (shown through the spectral plane (\,,\;) for the
eigenvalues N=N\,+i\;). The accompanying second figure
will show the result of a typical evolution of an unstable
mode, perturbed by a random perturbation of amplitude 1074,
in order to accelerate the instability evolution. The four con-
tour plot panels (one set on the left and one on the right) will
display the solution’s squared absolute value for four differ-
ent values of the evolution variable; the bottom panel will
show the dynamical evolution of the sites chiefly “participat-
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TABLE 1. Summary of the stability results for all the configurations presented below. For partially stable
(near the anticontinuum limit) solutions their interval of stability (for A=1) is given. In each case, the
outcome of the instability evolution for the parameters and initial conditions considered below is also

mentioned.
On site Intersite

Type Stability Instability outcome Stability Instability outcome
In-phase dipole Unstable One-site pulse C<0.064 One-site pulse
Out-of-phase dipole C<0.092 Decay Unstable One-site pulse
In-phase quadrupole Unstable Breathing behavior C<0.047 One-site pulse
Out-of-phase quadrupole C<0.08 One-site pulse Unstable Two-site mode
Vortex C<0.095 One-site pulse C<0.095 One-site pulse

ing” in the solution. A fourth-order Runge-Kutta scheme has
been used for the numerical integration results presented
herein.

To help the reader, a summary of the results, encompass-
ing our main findings reported below is offered in Table I.
The table summarizes the configurations considered, their
linear stability and the outcome of their dynamical evolution
for appropriate initial conditions in the instability regime.
Note that if the solutions are unstable for all C, they are
denoted as such, while if they are partially stable for a range
of coupling strengths, their interval of stability is explicitly
mentioned. Details of our analytical results and their connec-
tion or comparison with the numerical findings are offered in
the rest of this section.

B. Dipole configurations
1. Intersite, in-phase mode

Figures 1 and 2 encompass our results for the two types of
IP dipole solutions (i.e., initialized at the ac limit with two
in-phase excited sites). The IS-IP mode of the left panels is
theoretically found to possess one imaginary eigenvalue pair
(and, hence, is stable for small C)

A= +2\Ci. (9)

The collision with the continuous spectrum described above
causes the mode to become unstable for sufficiently large C;
the theoretically predicted instability threshold [obtained by
equating the eigenvalue of Eq. (9) with the lower edge of the
phonon band located at A—8C] is C=0.0625; the numeri-
cally found one is C~=0.064. Additional instability may en-
sue when the monotonicity of the P vs C curve changes (we
have found this to be a general feature of the defocusing
branches). The fourth and fifth rows show the mode and its
linearization eigenvalues for C=0.08 and 0.116. In fact, the
dynamical evolution of the mode is demonstrated for the
case of C=0.08, illustrating that only one of the two sites
eventually persists, after the demonstrably oscillatory insta-
bility destroys the configuration for #>100.

2. On-site, in-phase mode

The OS-IP mode of the right panels of Figs. 1 and 2 is
always unstable due to a real pair, theoretically found to be

A= x2C,

(10)

for small C. Notice once again the remarkable accuracy of
this theoretical prediction, in comparison with the numeri-
cally obtained eigenvalue. The fourth and fifth right panels of
Fig. 1 show the mode and its stability for C=0.08. Its dy-
namical evolution in the right column of Fig. 2 shows its
slow disintegration into a single-site solitary wave.

3. Intersite, out-of-phase mode

Figures 3 and 4 illustrate the two dipole, out-of-phase
modes. The left panels of the figures correspond to the IS-OP
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FIG. 1. (Color online) The first row of panels shows the power
P vs coupling C for the intersite (IS), in-phase (IP) mode (left) and
on-site (OS), IP mode (right). The second row shows their maximal
real eigenvalues and the third their first few imaginary eigenvalues.
The solid (blue) lines illustrate the numerical results, and the dashed
(red) lines the analytical ones. The fourth and fifth rows show the
contour plot of the mode profile (fourth panel) and the correspond-
ing spectral plane of eigenvalues N=\,+i\; (fifth panel). The left
two panels are for the IS-IP mode for C=0.08 and 0.116, respec-
tively. The right panel shows the OS-IP mode for C=0.08.
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FIG. 2. (Color online) The four panels at the top left corner
show the contour plots of the dynamical evolution of the unstable
intersite, in-phase (IS-IP) solution for C=0.08. The respective times
are t=50 and 150 in the top and r=250 and 350 in the second row.
The panel at the bottom left shows the dynamical evolution of the
square modulus of the principal two sites participating in the IS-IP
solution as a function of time. From both of the above, it is clear
that the configuration relaxes into a single-site soliton. The right
panels show the same features for the on-site, in-phase (OS-IP)
solution, which also relaxes (but more slowly) into a single-site
configuration.

mode; this one is also immediately unstable (as one departs
from the anticontinuum limit), due to a real pair which is

A =24C, (11)

for small C. The fourth and fifth panels of Fig. 3 show the
relevant mode for C=0.08 and C=0.116, showing its one
and two unstable real eigenvalue pairs respectively. The nu-
merical experiment highlighting the evolution of the mode
for the case of C=0.08 is shown in the left panel of Fig. 4.
Clearly, in this case as well, the positive real eigenvalue
leads to the growth of one of the two sites constituting the
dipole, and the eventual formation of a single-site solitary
pulse.

4. On-site, out-of-phase mode

The right panels of Figs. 3 and 4 show the OS-OP mode.
The stability analysis of this waveform shows that it pos-
sesses an imaginary eigenvalue

A=~ 2Ci. (12)

This leads to an instability upon collision (occurring theoreti-
cally for C=0.1, numerically for C~0.092) with the lower
edge (located at A—8C) of the continuous band of phonon
modes. The mode is shown for C=0.08 and 0.116 in the right
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FIG. 3. (Color online) Similar to Fig. 1, but now for the inter-
site, out-of-phase (IS-OP) mode (left panels) and for the on-site,
out-of-phase mode (OS-OP). The fourth and fifth rows of panels are
for C=0.08 and for 0.116 in both cases.
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FIG. 4. (Color online) Same as in Fig. 2, but now for the IS-OP
mode (left panels) and the OS-OP mode (right panels). The former
shown at times t=25, 50 (top row), 150, and 250 (second row) in
the case of C=0.08 finally results in a single-site configuration (as
is also illustrated by the bottom panel showing the two principal
sites participating in the mode). The latter, shown for C=0.1, at
times =50, 100 (top row), 150, and 200 (second row) is entirely
destroyed by the instability resulting in small-amplitude excitations.
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FIG. 5. (Color online) The top three rows of panels show the
same features as the corresponding ones of Fig. 1 but now for the
quadrupole IS-IP mode (left) and the quadrupole OS-IP mode
(right). The contour plot of the real part of the modes and the
spectral plane of their linearization eigenvalues are shown in the
fourth and fifth rows for C=0.05 and 0.1 in the case of the former
mode, while the latter is shown only for C=0.05.

panels of Fig. 3. The direct integration of the unstable solu-
tion with C=0.1 is shown in the right panels of Fig. 4, indi-
cating that in this case the mode completely disappears (be-
cause of the oscillatory instability) into extended-wave,
small-amplitude radiation.

C. Quadrupole configurations
1. Intersite, in-phase mode

Figures 5 and 6 show the quadrupolar mode with four
in-phase participating sites when centered between lattice
sites in the left panels of the figures. This mode is theoreti-
cally predicted to have two imaginary (for small C) eigen-
value pairs with

A ~2\Ci (13)
and one imaginary pair with
A ~ \8Ci. (14)

As a result, this mode (shown in the fourth row panels of
Fig. 5 for C=0.05 and 0.1) is unstable due to the collision of
the above eigenvalues with the continuous spectrum occur-
ring theoretically for C~=0.0477, while in the numerical
computations it happens for C=0.047. The outcome of the
instability shown in Fig. 6 for C=0.08 is the degeneration of
the quadrupolar mode into a single-site excitation.
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FIG. 6. (Color online) Same as Fig. 2, but now for the quadru-
pole IS-IP mode with C=0.08 (left panels) and the quadrupole
OS-IP mode with C=0.05 (right panels). The left panels are for 7
=200, 300 (top), 400, and 500 (middle) and illustrate alongside the
bottom row (containing the evolution of the principal four sites
participating in the structure) how the configuration eventually de-
generates to a single-site soliton. The right panels are for r=50, 150,
(top row) 250, and 350 (second row) and show together with the
bottom row the complex oscillation (breathing) involved in the be-
havior of the quadrupole OS-IP mode for C=0.05.

2. On-site, in-phase mode

The right panels of Figs. 5 and 6 show the case of the
on-site, in-phase mode. The latter is found to always be un-
stable due to a real eigenvalue pair of

A= +£4C (15)
and a double real eigenvalue pair of
A +412C. (16)

This can also be clearly observed in the fourth and fifth pan-
els of Fig. 5, showing the mode and its stability for C
=0.05. The dynamical evolution of the unstable mode for
C=0.05 is shown in the panels of Fig. 6. Both from the
contour plots at the different times and from the dynamical
evolution of the main sites participating in the structure, it
can be inferred that the mode embarks in an oscillatory
breathing, without being ultimately destroyed in this case.

3. Intersite, out-of-phase mode

We next consider the case of the IS-OP mode in Figs. 7
and 8 Our analytical results for this mode show that for small
values of C, we should expect to find it to be immediately
unstable due to three real pairs of eigenvalues, namely, a
single one with
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FIG. 7. (Color online) Similar to Fig. 1 but for the quadrupole
IS-OP mode (left panels) and the quadrupole OS-OP mode (right
panels). The fourth and fifth rows show the modes and their stabil-
ity for C=0.08 and 0.116 in each case.

—_—

A=~ +8C (17)

and a double one with

A= +21C. (18)

This expectation is once again confirmed by the numerical
results of the left panel of Fig. 7. The fourth and fifth rows
show the mode and the spectral plane of its linearization for
the cases of C=0.08 and 0.116. The dynamical evolution of
this mode also gives an interesting result, in that it produces,
upon manifestation of the instability, a long-lived, two-site
oscillatory mode, as is illustrated in the left panels of Fig. 8
for C=0.08.

4. On-site, out-of-phase mode

Finally, the last one among the quadrupolar modes is the
OS-OP mode, examined in the right panels of Figs. 7 and 8.
Our theoretical analysis predicts that this mode should have a
double imaginary eigenvalue pair of

A= +2Ci (19)
and a single imaginary pair of
N = 4Ci. (20)

These, in turn, imply that the mode is stable for small C, but
becomes destabilized upon collision of the larger one among
these eigenvalues with the continuous band of phonons. This
is numerically found to occur for C=0.08, while it is theo-
retically predicted, based on the above eigenvalue estimates,
to take place for C=0.083. The mode’s stability analysis is
shown in the fourth and fifth rows of Fig. 7 for C=0.08 and
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FIG. 8. (Color online) Same as Fig. 2, but for the evolution of
the quadrupole IS-OP mode with C=0.08 (left panels) and the
quadrupole OS-OP mode with C=0.1 (right panels). The former is
shown for #=25, 50 (top row), 150, and 250 (second row) substan-
tiating (together with the bottom row showing the principal four
sites of the branch) its resulting into a long-lived, breathing two-site
wave form. The latter is shown for r=50, 150 (top row), 250, and
350 (second row) indicating its degeneration into a single-site
configuration.

0.116; the analysis for C=0.1, and its dynamical evolution
are examined in the right panels of Fig. 8. In this case, we do
find that the mode essentially degenerates to a single-site
solitary wave.

D. Vortex configuration
1. Intersite vortices

Finally, Figs. 9 and 10 show similar features, but now for
the IS (left panels) and OS (right panels) vortex solutions
[25,26]. The former has a theoretically predicted double pair
of eigenvalues

N~ +2Ci, (21)

leading to an instability upon collision with the continuum
band for C=0.095 (C=0.1 theoretically). In this case, there
is also an eigenvalue of higher order,

A= +4C%, (22)

which obviously depends more weakly on C. The fourth and
fifth rows of Fig. 9 show the real and the imaginary parts of
the vortex configuration for C=0.08 and 0.116 and the sixth
row the corresponding spectral planes. The dynamical evo-
lution of the vortex of topological charge S=1 for C=0.1 is
shown in the left panels of Fig. 10, indicating that the vortex
also, upon the occurrence of the oscillatory instability, be-
comes a single-site solitary wave.
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FIG. 9. (Color online) The same features as in Fig. 1 are shown
here for the IS vortex of topological charge S=1 (left) and the OS
vortex of S=1 (right). In this case both the real (fourth row) and
imaginary (fifth row) parts of the solution are shown (and their
stability in the sixth row) for C=0.08 and 0.116.

2. On-site vortices

On the other hand, the OS vortices are shown in the right
panels of Figs. 9 and 10. In this case, we theoretically find
that the vortex, for small C, should have a double pair of
eigenvalues

N=2Ci (23)
and a single, higher-order pair of eigenvalues
A~ +132C%. (24)

The former eigenvalue pairs, upon collision with the continu-
ous spectrum, lead to an instability, theoretically predicted to
occur at C=0.1 and numerically found to happen for C
~(0.095. The on-site mode (and its stability) is shown in the
fourth to sixth right rows of Fig. 9 for C=0.08 and 0.116. Its
evolution (for C=0.1) is shown in the right panels of Fig. 10,
where it is again seen that the mode degenerates from an S
=1 to an S=0 structure, i.e., a single-site solitary wave with
no topological charge.

E. General principles derived from stability considerations

It is interesting to note as an overarching conclusion that
the stability intervals of the defocusing structures are differ-
ent from those of their focusing counterparts (especially
when they are stable close to the anti-continuum limit) be-
cause of the collisions with the continuous spectrum band
edge; the latter is at A=A in the focusing case, while it is at
A=A-8C in the defocusing setting. Another similarly gen-
eral note is an immediate inference on whether the structures
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FIG. 10. (Color online) Same as in Fig. 2 but for the dynamical
evolution of the IS (left panels) and the OS (right panels) vortex of
topological charge S=1. Both cases are shown for C=0.1. Both the
left and right panels of evolution are for 1=50, 150 (top row), 250,
and 350 (second row) and alongside the bottom row showing the
principal four sites of the vortex they show how the vortices trans-
form themselves into fundamental solitary waves centered on a
single site (in the latter case, interestingly, the site of the largest
excitation of the ensuing wave is not one among the four principal
excitation sites of the original OS vortex).

are stable or not; this can be made based on the knowledge
of whether their focusing counterparts are stable or not and
the transformation from the former to the latter through the
staggering transform: u, ,,=(-1)"*"v, . For instance, IP
two-site configurations (both OS and IS) are known to be
generically unstable in the focusing regime [26]; through the
staggering transformation, OS-IP of the focusing case re-
mains OS-IP in the defocusing, while IS-IP of the focusing
becomes IS-OP in the defocusing. Hence, these two should
be expected to be always unstable, while the remaining two
(OS-OP in both focusing and defocusing and IS-OP of the
focusing, which becomes IS-IP in the defocusing) should
similarly be expected to be linearly stable close to the ac
limit, as is indeed observed. Notice that, interestingly
enough, for the vortex states the staggering transformation
indicates that the stability is not modified between the focus-
ing and defocusing cases. This is because for an IS vortex, it
transforms an S=1 state into an S=—1 state (which is equiva-
lent to the former, in terms of stability properties), while the
OS vortex remains unchanged by the transformation. How-
ever, as mentioned above, these considerations are not suffi-
cient to compute the instability thresholds for partially stable
modes, among other things. They do, nonetheless, provide a
guiding principle for inferring the near-anti-continuum limit
stability of the defocusing staggered states, based on their
focusing counterparts.
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IV. CONCLUSIONS AND FUTURE CHALLENGES

In this paper, we have studied in detail some of the prin-
cipal multisite solitary wave structures that emerge in the
context of defocusing nonlinearities, examining, in particu-
lar, dipole, quadrupole, and vortex configurations. We have
illustrated which ones among these states can potentially be
stable (e.g., IS-IP and OS-OP modes for both dipoles and
quadrupoles, as well as the vortices) and those that will al-
ways be unstable (e.g., IS-OP and OS-IP modes for both
dipoles and quadrupoles). We have also provided detailed
analytical estimates of the stability eigenvalues associated
with these modes, in very good agreement with the observed
numerical results. The analytical calculations also empower
us to identify, even for the stable (close to the anti-continuum
limit) modes, the relevant intervals of stability of those wave
forms. We have corroborated our analytical calculations with
detailed computations that identify the corresponding modes
and numerically analyze their linear stability. In addition, for
each of the modes, we have shown some typical examples of
their dynamical evolution, when they become unstable (ei-
ther directly, or subsequently due to eigenvalue collisions).

These results offer immediate suggestions for experiments
in arrays of optical waveguides, Bose-Einstein condensates
(e.g., of ¥Rb or **Na, which feature repulsive interactions
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amounting, at the mean-field level, to a defocusing nonlin-
earity) mounted on a deep optical lattice. In the latter case,
the nodes of the lattice considered herein would correspond
to BEC droplets in the respective wells of the optical poten-
tial. Finally, they are also suggestive of similar experiments
in the recently and rapidly growing theme of photorefractive
crystal lattices (where, however, the nonlinearity is slightly
different, featuring a saturable form).

We close by suggesting that these results also indicate that
higher charge configurations [26,27] may similarly be pos-
sible and could potentially also be stable in a defocusing
setting, similarly to the S=1 states discussed above. It would
certainly be of interest to examine such states in the near
future, as well as to study the effect of additional compo-
nents [28] (i.e., multicomponent states, relevant to the above
optical settings when multiple polarizations are present, or to
BECs when multiple hyperfine states are studied), or that of
higher-dimensional structures [29].
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